Transport equations with rough force fields and applications to the Vlasov-Poisson equation

نویسنده

  • Delphine Salort
چکیده

The aim of this article is to give new dispersive tools for certain kinetic equations. As an application, we study the three dimensional Vlasov-Poisson equation for initial data having strictly less than six moments in Lx,ξ where the non linear term E is a priori rough. We prove via new dispersive effect that in fact the force field E is smooth in space at the cost of a localisation in a ball and an averaging in time. We deduce new conditions to bound the density ρ in L∞ and to have existence and uniqueness of global weak solutions of the Vlasov-Poisson equation with bounded density for initial data having strictly less than 6 moments in Lx,ξ. The proof is based on a new approach which consists in establishing a priori moment effects on the one hand for linear transport equations with rough force fields and on the other hand along the trajectories of the Vlasov-Poisson equation. L’objectif de cet article est de donner de nouveaux outils dispersifs pour certaines équations cinétiques. Comme application, on étudie l’équation de Vlasov-Poisson en dimension 3 pour des données initiales ayant strictement moins de six moments dans Lx,ξ où le terme non linéaire est a priori peu régulier. On prouve, via de nouveaux effets dispersifs que, en fait, le terme de force E est régulier en espace quitte à se localiser sur une boule en espace et à intégrer en temps. On en déduit de nouvelles conditions pour que la densité ρ soit dans L∞ et pour obtenir existence et unicité de solutions faibles de l’équation de Vlasov-Poisson avec densité bornée pour des données initiales ayant strictement moins de six moments dans Lx,ξ. La preuve est basée sur une nouvelle approche qui consiste à établir des effets de moments a priori d’une part pour des équations de transport avec des termes de force peu réguliers et d’autre part le long des trajectoires de l’équation de Vlasov-Poisson.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Lagrangian structure of transport equations: the Vlasov-Poisson system

The Vlasov-Poisson system is a classical model in physics used to describe the evolution of particles under their self-consistent electric or gravitational field. The existence of classical solutions is limited to dimensions d ≤ 3 under strong assumptions on the initial data, while weak solutions are known to exist under milder conditions. However, in the setting of weak solutions it is unclear...

متن کامل

From Vlasov–Poisson and Vlasov–Poisson–Fokker–Planck Systems to Incompressible Euler Equations: the case with finite charge

We study the asymptotic regime of strong electric fields that leads from the Vlasov–Poisson system to the Incompressible Euler equations. We also deal with the Vlasov–Poisson–Fokker– Planck system which induces dissipative effects. The originality consists in considering a situation with a finite total charge confined by a strong external field. In turn, the limiting equation is set in a bounde...

متن کامل

Boundary Value Problems for the Stationary Vlasov-Boltzmann-Poisson Equation

We investigate the well posedness of stationary Vlasov-Boltzmann equations both in the simpler case of linear problem with a space varying force field and a collisional integral satisfying the detailed balanced principle with a non-singular scattering function, and, the non-linear Vlasov-Poisson-Boltzmann system. For the former we obtain existence-uniqueness results for arbitrarily large integr...

متن کامل

General Moment Model of Beam Transport∗

Using the Hamiltonian structure of the Vlasov equation, we develop a general, relativistic, three-dimensional model of beam transport based on phase space moments of the beam particle distribution. Evolution equations for these moments are derived from the non-canonical Poisson bracket for the Vlasov equation. In this model, the beam centroid experiences the full non-linear forces in the system...

متن کامل

Time-dependent rescalings and Lyapunov functionals for the Vlasov-Poisson and Euler-Poisson systems, and for related models of kinetic equations, fluid dynamics and quantum physics

We investigate rescaling transformations for the Vlasov-Poisson and Euler-Poisson systems and derive in the plasma physics case Lyapunov functionals which can be used to analyze dispersion effects. The method is also used for studying the long time behaviour of the solutions and can be applied to other models in kinetic theory (2-dimensional symmetric Vlasov-Poisson system with an external magn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007